
Document version 0.2 11.05.2005

Implementing multiple network cards in Bochs

Timo Teifel, ttri@teifel-net.de, University of Tübingen, Chair for Computer Networks and Internet,
February 2004 (Bochs 2.1). April 2005: Updated for Bochs Version 2.2pre3.

1 Introduction
Bochs is an open source PC emulator (http://bochs.sourceforge.net). The original version comes with
only one network interface card and it's not possible to use more network connections in the emulated
computer.
As part of a project in the workgroup I work at the University of Tübingen, we required more than
one network interface card. I modified Bochs so that it supports up to 4 distinct network interface
cards. The patch is available from www.teifel.net/projects.

2 Configuration of Bochs and the System inside
To enable the network interface cards, you have to run the ./configure script with --enable-ne2k
to switch on network-interface card (NIC) support. After that, you can build Bochs with the make
command.
At the moment, no GUI (if I write “GUI” I also mean the Bochs textconfig interface) can set the
configuration of the network cards 1-3. Only the card number 0 can be set. So, open your .bochsrc
config file in a text editor and add lines like this:

ne2k_0: ioaddr=0x280, irq=9, mac=fe:fd:00:00:00:03, ethmod=linux, ethdev=eth0
ne2k_1: ioaddr=0x380, irq=10, mac=fe:fd:00:00:00:01, ethmod=tuntap,
ethdev=/dev/net/tun, script=tuntapnetwork.sh

The ne2k is equivalent to ne2k_0 for backward compatibility. You should prefer the _0 notation
though.
If you're running Linux in the Bochs (I'm using Knoppix 3.7 at the moment), you may have to specify
aliases for your network cards in the /etc/modules.conf file like this:
alias eth0 ne
alias eth1 ne
options ne io=0x280,0x380 irq=9,10

You should then load the module with:
modprobe eth0 eth1

Or just use a command like this:
modprobe ne io=0x280,0x380 irq=9,10

After that you can use both ethernet devices as usual.

3 Implementation
The changes made to the sourcecode are explained by source files.

3.1 Automatic configuration of the sourcecode
With multiple NICs, it's not possible to use static member functions. These have to switched off in
config.h.in, which is used to create config.h by the ./configure script. The “1” has to be
changed to a “0” so that the BX_USE_NE2K_SMF line looks like this:

1/3

Document version 0.2 11.05.2005

#define BX_USE_NE2K_SMF 0

After this, ./configure --enable-ne2000 && make works fine.

3.2 bx_options
All options for the virtual hardware are listed in a struct called bx_options. It's defined in
bochs.h:
typedef struct BOCHSAPI {...} bx_options_t;

That typedef contains
 bx_ne2k_options ne2k;

which has to become an array of 4 devices, 0..3:
 bx_ne2k_options ne2k[4];

3.3 Hardware config class
In config.cc, the hardware configuration options are read from the config file and initialized.
bx_init_options has to init all 4 NICs.
bx_reset_options resets all 4 NICs.
parse_line_formatted reads one line of the configure file (.bochsrc) and extracts the configuration
for the devices. I modified this function, so that it can read the configuration for the 4 different NICs.
The number is extracted from the input file and is used to access the correct card in the array.
bx_write_ne2k_options writes the configuration which the user changed in the GUI back to the
bochsrc file. Accepts a new parameter: cardNumber.
bx_write_configuration writes information of all 4 NICs.

3.4 Simulation interface options
Every value which the user can change has to have a unique ID, set in an enumeration bx_id in
gui/siminterface.h. The 8 values for the NIC card have to be copied for each card, and, since an
enumeration cannot contain arrays, be renamed. The IRQ for the NIC with number 0 becomes:
 BXP_NE2K_0_IRQ,

and so on. Every value has the number of the card in its name.

3.5 User interfaces
The user interfaces like the textconfig GUI or wxGUI allow to enter the configuration values for the
NIC card. I didn't implement the possibility to specify the values for every card. Only card number 0
can be changed.
For configuration of the other cards, the user has to edit the .bochsrc file manually.

3.6 The four devices
In iodev/devices.cc, the four devices are created.

The constructor of bx_devices_c assigns a stub class of a NIC to the pluginNE2kDevice[x] for all
4 network cards.
In bx_devices_c::init the plugin for every device that is present is loaded. This has to happen for
every network card. The PLUG_load_plugin macro resolves to libne2k*_LTX_plugin_init. There
are functions with number 0 to 3 at the place of the *, for each NIC number. Unfortunately, the
compiler couldn't find these functions, even though I placed them at the same position where the
original Bochs had the corresponding function for only one card. I therefore added a forward

2/3

Document version 0.2 11.05.2005

declaration of these functions to solve the problem.
These four functions are defined in iodev/ne2k.cc.

3.7 bx_devices
The class bx_devices_c contains pointers to all devices and is defined in iodev/iodev.h. The
pointer to the NIC device is now an array of pointers:
bx_ne2k_stub_c *pluginNE2kDevice[4];

3.8 Ne2K
The class bx_ne2k_c in iodev/ne2k.[hc]* represents the NICs, and to access its options in the
bx_options.ne2k[] array, it has to know its NIC number. Therefore I added a public int-value
interfaceNo in the bx_ne2k_c class, in ne2k.h.

The devices get created and constructed in the libne2k_LTX_plugin_init(...) function, which
sets the interfaceNo value after constructing the object. The function also registers the newly
created object with BX_REGISTER_DEVICE_DEVMODEL with a pluginname that is unique for every NIC.

The original Bochs version of this file created one ne2k object and named it theNE2kDevice, which
was in global scope of ne2k.cc.
In my case, with several such objects, this obviously didn't work any longer. In the non-static case,
where several NICs are possible, theNE2kDevice is a Preprocessor-Macro that just gets “this”. So it
should work with the static-case with only one NIC, too.
The function bx_ne2k_c::rx_frame, which is called when an ethernet frame has been received, uses
a static unsigned char bcast_addr[6] ... it's probably not necessary to remove the 'static' here.

bx_ne2k_c::init() reads in the values from the configuration file. Therefore, it reads
bx_options.ne2k[interfaceNo] with the interface-Number given to it by the
libne2k_LTX_plugin_init function.

The init function registers the objects read- and write-handlers with DEV_register_*_handler. It
passes along the corresponding handler and a this-pointer which is necessary for the static handler to
know which object to send the read/write request to. It also sends a char* pluginName which is
unique for every card.
After that, the init function calls eth_locator_c::create with the user-selected module name
(linux, tuntap, null, etc.). This creates an eth_pkt_mover object, that is saved in the ethdev
pointer of the bx_ne2k_c Object. ethdev is used to send packets to the network in the
bx_ne2k_c::write_cr function.

3.9 LOG_THIS
Many of the iodev/eth_*.cc files use a preprocessor macro called LOG_THIS. It's only used for Log
entries, warning or error messages in the macros BX_INFO, BX_ERROR and so on.
#define LOG_THIS bx_devices.pluginNE2kDevice->

This does work no longer because there are several NE2K devices. At the definition of the macro, it is
unknown to which device the code belongs. Since it's not crucial for the simulation that it points to
the correct device and it's only used for messages to the user, the macro is now defined to always
point to the device 0.

3/3

